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All explicit difference schemes for solving systems of conservation laws are subject 
to the Courant-Friedrichs-Lewy [l] convergence condition. This condition manifests 
itself as a restrictive condition on the size of the time steps which can be used in the 
schemes. Implicit schemes, on the other hand, automatically satisfy the convergence 
condition. However, most implicit schemes used in the past have either only been 
first-order accurate or second-order accurate but nondissipative (Gary [2], Zwas and 
Abarbanel [17]). This paper develops a class of second-order-accurate implicit schemes 
which are dissipative. Some numerical results are presented which show their usefulness 
in solving problems involving discontinuities. These results appear promising for the 
case of a single equation. However, there appears to be some computational difficulties 
in the case of systems of equations which require further investigation. 

1. INTRODUCTION 

In recent years, many finite difference methods have been proposed for solving 
systems of conservation laws (Richtmyer [9], Gourlay and Morris [3], Rubin and 
Burstein [ll], McGuire and Morris [7]). These methods have been explicit dif- 
ference methods and as such are necessarily bound by the Courant-Friedrichs- 
Lewy (CFL) [l] convergence condition. This condition imposes a severe restriction 
on the size of the time steps. 

We will consider the one-space dimensional system of conservation laws, 

(au/at) + @f/ax)(u) = 0. (1.1) 
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In (1.1) u and fare n-vectors and the solution is sought in the region 

R EC [0 < x d X] x [t > 01. (1.2) 

For the discussion of the physical nature of the solutions of this system and of the 
existence and uniqueness of solutions, see Jeffrey and Tanuiti [5]. 

The equation is considered to be hyperbolic over R which means that the 
Jacobian off, namely, A(u) = af/lau, has real eigenvalues and a complete linearly 
independent set of eigenvectors. It will also be assumed that these eigenvalues are 
positive throughout R so that, with initial conditions 

and boundary conditions 

(1.1) gives a well-posed problem in R. The case when some of the eigenvalues are 
negative is easily dealt with (see [5]). 

A grid of points with mesh spacing h in the x direction and time step k in the t 
direction is placed on R. It is assumed that x = N/z. 

The value of the solution of the differential equation at the grid point x = i/z, 
t = mk is denoted by u(ih, mkj = u,.~ and any approximation to this value is 
denoted by wirn. One of the most used methods for solving (1.1) is the two-step 
Richtmyer Scheme [9]. A generalization of this method was presented in McGuire 
and Morris [7] and takes the following form: 

where 

im+a = jo;)y+a>, p = k/h = constant, a # 0, 
;:+a = (w:+ + WE*)/2 - up(hT$, - jq. (1.4) 

This method is second-order accurate. 
In analyzing the linearized stability of the method, it is applied to a system 

(au/at) + A(au/ax) = 0 (1.5) 

where A is a constant matrix. This A is equivalent to locally constant values of 
A(u) = af/lau. The amplification matrix is then derived using Fourier integrals as 

G(a) = I - &ipA sin (Y + (p2Az/2)(2 cos a - 2), 

where 01 = /3h, with p the variable in the Fourier space. 
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The matrix G(ol) is uniformly diagonalizable by the assumption that the systems 
(1.5) are hyperbolic. Hence, the Von Neumann condition is sufficient as well as 
necessary for linearized stability. 

The eigenvalues of G(U) have moduli 

( g(a)l” = 1 - p2hz(l -@X2) sin4 (a/2). U-6) 

Hence, the method is stable under the condition 

PIhI B 1, (1.7) 

where 1 A ( is the maximum modulus eigenvalue of A. 
Also, it is easy to see that 3S > 0 such that 

I gw d 1 - 6 I 01 I4 (Ial G4 
provided 

O<pJXI <l 

for all eigenvalues h of A. 

(1.8) 

Thus, under condition (1.8), the scheme (1.3), (1.4) is dissipative (in the linearized 
sense) of order 4. 

The stability condition (1.7) is the best possible for a scheme using the grid points 
(i, WI), (i f 1, m), (i, m + 1). Other explicit methods on these points (Gourlay and 
Morris [3]) can be analyzed in exactly the same way. They are all, however, 
necessarily subject to the restriction (1.7) on the size of the time steps which can be 
used. 

On the other hand, implicit methods have infinite domains of dependence and 
hence will automatically satisfy the CFL convergence criterion. The simplest 
implicit scheme 

is first-order accurate and unconditionally stable. The Crank-Nicolson method 

w;n+l + $ [j$y - Ay] = wim - $ syl - jj?,] (1.10) 

is second-order accurate and has local amplification matrix 

G(a) = [I + ~‘-15 A sm a]-’ [I - d-1 $ A sin a] . (1.11) 

The eigenvalues of this matrix all have modulus one. This means that the Crank- 
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Nicolson method is not dissipative and will thus be useless for the damping of 
high-frequency perturbations. 

Other implicit schemes have been studied, see Gourlay and Morris [4], Gary [2], 
and Abarbanel and Zwas [17]. These methods however, have always been either 
first-order accurate or nondissipative and second-order accurate. We obtain in the 
next section a class of second-order-accurate schemes. In Section 3, the stability and 
dissipative properties are considered and it is shown that a suitable choice of 
parameters gives a locally dissipative method. The computational implementation 
of the scheme is considered in Section 4. Some numerical results are presented in 
Section 5, and extensions of the schemes to two space dimensions are considered 
in Section 6 where some numerical results are also given. 

2. SECOND-ORDER-ACCURATE IMPLICIT SCHEMES 

Our aim is to develop a second-order-accurate implicit scheme which is dissipa- 
tive and has good stability properties. The term which accounts for the dissipation 
in the two-step Richtmyer scheme is the term p(ji’$’ - b’). Thus, let us perturb 
the Crank-Nicolson scheme by adding a similar term and adjusting the parameters 
of the constituent terms to give second-order accuracy. Thus, we consider the 
scheme 

pp+1 z = wjm - PPuzl - jyy) + c .fyJl - gY1) + d&y - jfy)] ) (2.1) 

where @+” is given by (1.4). It is then an easy matter to show that the scheme is 
second-order accurate provided 

2b+2c+d= 1, 

26 + ad = l/2. 
(2.2) 

Hence, we have obtained a two-parameter class of second-order-accurate 
implicit methods. (2.1) becomes the Crank-Nicolson method when d = 0, and it 
becomes the formulation (1.3), (1.4) when b = 0. In the next section, we consider 
the linearized stability and dissipative properties of this class of methods. 

3. ANALYSIS OF LINEARIZED STABILITY AND DISSIPATION OF (2.1) 

Linearizing (2.1) and (1.4) and eliminating the starred values gives 

,y+l = wim - pA b(wy+;l - wry) - p (c + ;) A(w;, - wEI) 

+ ad p2A2(w& - 2wim + w&). (3.1) 
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The linearized amplification matrix is thus 

G(a) = [Z + d-1 26pA sin a1-l [I - d/-1 2 (c + i) pA sin cx 

+ 2adp2Aa(cos a - l)] . 

The eigenvalues of G(or) are 

g(4 = 
1 - d--1 2 (c + 3 pX sin c1 + 2adp2X2(cos a - 1) 

1+ d-12bpXsinLu 
, 

where X is an eigenvalue of A (h is real). 
Thus 

, g(a),2 = (1 + (1 - 4b)p2X2(cos a - 1)}2 + ((1 - 2b)ph sin LX}” 
I + 4bap2h2 sin2 OL 

= 1 _ 2adp2h2(1 - 2udpW)( 1 - cos a)2 
1 + 4b2p2X2 sin2 01 ’ 

The relations (2.2) were used in obtaining the form (3.4) for 1 g(a)\ . 

(3.2) 

(3.3) 

(3.4) 

From (3.2), the matrix G(ol) is uniformly diagonalizable since A has a complete 
set of linearly independent eigenvectors. Thus the Von Neumann condition is 
sufficient as well as necessary for stability (see Richtmyer and Morton [lo]). 

From (3.4), stability (in the linearized sense) is thus assured provided 

0 < 2udpw < 1 (3.5) 

for all eigenvalues X of A. Thus, unconditional stability is achieved when ad = 0; 
the method then reduces to the Crank-Nicolson method. When ad > 0, the scheme 
is stable provided 

where ( h 1 now denotes the largest modulus eigenvalue of A. 
Also, it is easy to see that, provided 

0 < 2udp2X2 < 1, 

there exists a constant S > 0 such that 

(3.6) 

(3.7) 

(3.8) 
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for all eigenvalues g of G and for all 1 01 1 < rr. (3.8) states that the scheme (2.1), 
(1.4) is dissipative (in the linearized sense) of order 4. Condition (3.7) is equivalent 
to 

ad > 0, h # 0, 

(3.9) 

where 1 h 1 denotes the maximum modulus eigenvalue of A. Note that (3.9) requires 
that all the eigenvalues of A are nonzero. 

Thus, under conditions (2.2) and (3.9), the scheme (2.1), (1.4) is a two-parameter 
class of implicit, dissipative, stable (in the linearized sense) methods for solving 
nonlinear conservation laws in one space dimension. 

4. COMPUTATIONAL IMPLEMENTATION OF THE SCHEME 

At each time level, Eq. (2.1) gives a nonlinear system of difference equations to 
solve. The obvious first approach is to define an iteration on the equations, namely 

(j+%n+l _ ii) (jl 
w i - warn - p[b(fs;;l - Jyy) + C(fiTl -fg!$) 

+ d(&” - j?;a)] j = 0, 1, 2,... (4.1) 

with some initial guess for ($m+‘. Although iterative techniques like (4.1) would 
give the desired results, they w”ill be lengthy, and difficulties with starting values and 
stopping criteria generally make such a process inefficient. Our technique will be to 
use a direct method which takes account of the tridiagonal structure of Eq. (4.1). 
This technique has already been exploited in Gourlay and Morris [4] for solving 
implicit nonlinear equations. 

First, a matrix 2 is defined by 
f(u) = A”(u) - u. (4.2) 

It is obvious from this equation that many choices exist for A”. The choice will 
depend on the particular problem to be solved. Using (4.2) in (2.1) gives 

,:+I + pb[A(w~;l) w;y - A(w:y) wyy] 

= wim - pk(h:, -X2 + d&T;” - .k;O)l. (4.3) 

Now let gr+’ be a first-order approximation to u(ih, (m + 1) k) which is smooth 
through second-order terms, namely 

;7+1= z&h, (WI + 1) k) + C;h’ + O(h’), (4.4) 



132 MCGUIRE AND MORRIS 

where CE is a smooth function. Then we have 

L4(Q;l ) u((i + 1) h, (m + 1) k) - &$!II) U((i - 1) h, (m + 1) k) 

= 2h(a/ax){lq;;~“) u(ih, (m + 1) k)} + O(P) 

= 2h(~/h){A(u(ih, (m + 1) k)) z&h, (m + 1) k)) + O(h3) 

= 2h(qpx)(u(ih, (m + 1) k)) + O(P). (4.5) 

Thus, replacing A”(wT+‘) in (4.3) by x(?y+l) does not alter the accuracy of the 
method. 

Equation (4.3) is a three block recurrence relation at each time level. To make 
these equations well posed at each time level, we require values of wy+l at the 
boundaries, namely values for wr+’ and wz+‘. 

At the lower boundary, we can simply take 

wo m = u,(mk) m = 1, 2, 3 ,.... (4.6) 

Supplying the values WE+’ is not quite as easy. Two techniques are considered. 
First, we can simply predict a second-order-accurate value for w;V+’ by one of the 
many available explicit techniques. This approach gives a block tridiagonal system, 
(IV - 1) x (N - 1) blocks, to be solved at each time level for {w~+l}~;‘. 

A second approach is to adjust Eqs. (2.1) and (1.4) to be forward difference 
equations of second-order accuracy at the upper boundary. (See McGuire and 
Morris [7].) Doing this in (2.1) and (1.4) at i = N gives 

wN 
m+1 = w m 

N - &@(2v, + v,2)f;+1 + 42v, + vz2)fNm + &?;; - jk!)]’ 

(4.7) 
W *;;; = (2 + v, + V,“) w;+l - ap(V, + V$)fgyfl. (4.8) 

Now, however, replacement offim+’ in (2.1) and (4.7) by A(zy+r) WY+’ no longer 
gives a block tridiagonal system at each time level since the term 

(x7, + v,2)fz+1 

involves values at i = N, N - 1, N - 2. However, by writing 

(2V, + V,“) j-$+l = V&2 + V,) fp+l = 3vJ-;+1- V,f,"_i' 

+ 3v,A(t;;+l) w:+l- y&G”,‘_:) (4.9) 
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correct to order h3 terms, it is then apparent that we will have a block tridiagonal 
system at each time level to be solved for {wT”}r. Note that similar boundary 
techniques can be applied to be problem with nondefinite Jacobian A(u); for the 
components of u corresponding to negative eigenvalues in A, boundary conditions 
are specified on the right-hand boundary with a boundary technique similar to that 
described in [6] and [7] used for values on the left-hand boundary. 

These block tridiagonal systems are efficiently solved by the algorithm in Varga 
[12]. This algorithm reduces the systems to solving small matrix systems of the 
order of A”. These small systems can be solved easily if A” is chosen suitably. The 
choice of A” will depend on the form of the functionf. 

It now only remains to indicate how values for ?.$+I may be determined. We 
have available values wim and Gy+‘. Hence, taking a linear combination of these 
values so as to be first-order accurate for wy+l will satisfy our requirements. Thus 
we take 

iT+l = rwim + s(l$y + ~~~). (4.10) 

It is easily verified that first-order accuracy is achieved when 

s = 1/2a, 

I = 1 - l/a. 
(4.11) 

The computational details for the implementation of the class of methods is 
now complete. 

5. NUMERICAL EXPERIMENTS IN ONE SPACE DIMENSION 

The results of some experiments using the schemes of Section 2 are tabulated and 
discussed in this section. The time steps used are in excess of those allowed by the 
CFL condition for explicit methods (particularly useful in the case of such problems 
as atmospheric models where wave speeds of widely differing magnitudes occur). 

Experiment I 

The scalar equation 
(au/at) + (a/ax)(gu2) = 0 (5-l) 

was solved over the region [0 < x < l] x [t > 0] for the following three sets of 
initial and boundary conditions; 

z&(x) = x 
m = 0, 
z&(x) = x2 
M) = 0, 

(5.2) 

(5.3) 
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and 

(4 (5.4) 

The solutions of these three problems are 

4% t) = x/(1 + 0, (5.5) 

u(x, t) = (1 + 2xt - (1 + 4xt)l12)/2t2, (5.6) 

TABLE I 

Errors (Multiplied by loS), After 300 Time Steps, at a Central Grid Point for the Problem 
with Initial Data Given by x 

d 

P \ a 0.125 0.25 0.5 1.0 2.0 . 

0) 0.25 -97 -31 -4 0 5 

0.5 -92 -27 0 4 8 

1.0 1.0 44 11 3 6 12 

2.0 21 -0 0 -1 -3 

4.0 -6 -12 -26 -58 -156 

0.25 -433 -117 -11 2 6 

0.5 -241 -50 -3 5 10 
2.0 1.0 -134 -11 3 6 * 

2.0 -14 -1 -1 -4 * 

4.0 -8 -16 -35 -86 * 

(ii) 0.25 56 21 2 2 5 

0.5 I 3 2 4 9 

1.0 1.0 -0 1 3 5 12 
2.0 -1 -0 -1 -1 * 

4.0 -6 -13 -26 * * 

0.25 151 32 2 3 6 

0.5 -2 1 2 5 10 
2.0 1.0 -4 1 3 6 * 

2.0 -1 -1 -2 * * 

4.0 -8 -16 * * * 

* Denotes nonlinear instability had occurred. 



SOLVING SYSTEMS OF CONSERVATION LAWS 

and 
u(x , t) = (-t + (t2 + 4x)‘i2)/2 , 

respectively. It is noted that in (5.6) 

135 

(5.7) 

as given by (5.3). 
The errors (the differences between w and u) for the above three problems are 

given in Tables I, II, and III, respectively. Each of these tables is divided into two 

TABLE II 

Errors (Multiplied by 10e), After 300 Time Steps, at a Central Grid Point for the Problem with 
Initial Data x2 

P 

(8 

1.0 

2.0 

(ii) 

1.0 

2.0 

d 

\ a 0.125 0.25 

0.25 -607 -501 

0.5 -281 -423 

1.0 -687 -550 

2.0 -645 -458 

4.0 -532 -458 

0.25 -998 -404 

0.5 -1443 -873 

1.0 -1284 -446 

2.0 -457 -325 

4.0 -371 -328 

0.25 -1150 -801 

0.5 -455 -476 

1.0 -519 -471 

2.0 --534 -458 

4.0 -532 -464 

0.25 -364 -320 

0.5 -384 -337 

1.0 -347 -324 

2.0 -356 -325 

4.0 -371 -334 

1.0 2.0 

-440 -274 121 

-418 -209 187 

-371 -185 200 

-366 -202 159 

-399 -262 10 

-271 -186 96 

-329 -146 138 

-267 -137 138 

-271 -160 82 

-304 * * 

- 
-472 -284 121 

-408 -209 188 

-371 -187 201 

-371 -201 * 

-397 * * 

-332 -190 96 

-281 -146 137 

-267 -137 * 

-272 -160 * 

* * * 

* Denotes nonlinear instability had occurred. 

58r/r4/2-3 
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TABLE III 

Errors (Multiplied by 106), After 300 Time Steps, at a Central Grid Point for the Problem with 
Initial Data l/Z 

d 

P \ a 0.125 0.25 0.5 1.0 2.0 

(9 0.25 1108 

0.5 971 

1.0 1.0 718 

2.0 585 

4.0 538 

0.25 614 

0.5 584 

2.0 1.0 355 

2.0 279 

4.0 249 

(ii) 0.25 1373 961 521 

0.5 981 679 319 

1.0 1.0 702 484 235 

2.0 581 421 234 

4.0 538 403 221 

0.25 955 563 242 

0.5 535 328 134 

2.0 1.0 336 221 111 

2.0 273 198 116 

4.0 249 176 * 

853 505 

673 317 

485 235 

421 235 

404 221 

475 233 

335 134 

225 111 

198 116 

176 49 

111 -104 

33 -104 

33 -83 
61 * 

-17 * 

37 -24 

23 -14 
37 * 

* * 

* * 

112 -104 

33 -104 

33 -83 
61 * 

* * 

38 -24 
23 * 

42 * 

* * 

* * 

* Denotes nonlinear instability had occurred. 

parts (i) and (ii) where (i) contains the results obtained using an explicit method to 
give values on x = 1, and (ii) contains those obtained using the formulation (4.9) 
at the upper boundary. In all cases, h = 0.1 and the errors are given after 300 time 
steps. 

In each of the examples, the maximum value of the solution is 1 which occurs at 
t = 0 and the value of the solution decreases with increasing time. Thus, for 
stability in the linearized sense when p = 1, ad must lie in the interval [0, 31. From 
the results, however, it is seen that the schemes are stable (at least over 300 time 
steps) for a larger range of ad than is predicted by the linearized theory. The same 
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remark holds when p = 2.0. It is also to be noted that instability arises for smaller 
values of ad when p = 2.0 than when p = 1 .O. Also, the errors for both p = 1 .O 
and 2.0 are of the same magnitude, Further, provided the stability condition was 
satisfied, best values of a and d for minimizing the truncation errors could be chosen 
from an analysis of the truncation error terms for both cases p = 1 .O and p = 2.0. 
However, because of greater efficiency, the largest value of p possible would be 
chosen in practice. 

Also, comparison of parts (i) and (ii) of each of Tables I, II, and III shows that 
instability occurs for smaller values of ad in (ii) than in (i). Thus, it is recommended 
that, when using this method, the upper boundary values should be predicted by an 
explicit scheme. 

Hence, for problems of the type shown here, p can be chosen greater than unity 
and still reasonable answers obtained. ad should then be chosen in the range 
allowed by the linearized stability theory and the conditions for a dissipative 
scheme. Further, smaller errors are given when ad is chosen near the top of this 
range. Finally, since $,‘T+” is an approximation to u?+‘, a should be chosen so as to 
keep this approximation a reasonable one. For example, the choice a = 4 gives an 
extremely centralized scheme involving values at (i, m), (i & 1, m), (i & 4, m + $), 
(i & 1, m + 1), and (i, m + 1). 

Experiment 2 

In this experiment, (5.1) was solved with discontinuous initial data, 

%(4 = 1; 
0 < x < 0.1, 
x > 0.1, (5.8) 

and the boundary data, 

241(t) = 1 t > 0. (5.9) 

The solution of this problem has a discontinuity travelling into the field of solution 
along the line x = 0.1 + $t with velocity dx/dt = l/2. 

Since the solution of the schemes will be zero at all points above, and far from, 
the line of discontinuity, it does not matter what boundary technique is used at the 
upper boundary. The value at this boundary will always equal zero. 

In Fig. 1, a selection of the results of this experiment are graphed. In each graph, 
the values of the solution given by the difference scheme after 50 time steps are 
plotted for grid points between x = 25 * p * h and x = 25 * p * h + 15 * h. The 
theoretical shock position occurs at x = 25 *p * h + 10 * h. In all runs, h was 
taken equal to 0.01. The values of d = 0.125,0.25,0.5, 1.0, 2.0, 4.0 for a particular 
value of a where used as parameters on each of the runs. In those cases where some 
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d - .125 d= .2 

d = .5 

d - 1.0 

d - 1.0 il 
Frc;. I. Graphs of the solution, after 50 time steps, obtained using the generalized implicit 

scheme with p = 1.0 and A = 0.01, for the problem of experiment 2. (a) a -7 0.25; d = 2.0 gave 
floating point overflow. (b) a 2 0.5; d = 2.0 gave floating point overflow. 
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d = .5 

d = .125 d - .25 

\ \ 

FIG. 1 (Continued). (c) a = 1.0; d = 1.0 gave floating point overfIow. (d) a = 2.0; d = .5 
gave floating point overflow. 
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.o _ 

d; ,125 d=.25 

;:I 
dz.5 

4 
d = 1.0 

: 
dz2.0 d:4.0 

FIG. 1 (Continued). p = 0.5 and h = 0.01. (e) a = 0.25. 

(f) 

_ d - .125. d = .25 

I 

\ 

FIG. 1 (Continued). p = 2.0 and h = 0.01. (f) a = 0.25; d = .5 gave floating point overflow. 
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of the values of d have no graph, the values above the last which have a graph gave 
floating point overflow. 

In this experiment, the maximum value of the theoretical solution is 1 and so 
the linearized stability condition is 

p < l@ad)‘J”. 

When p = 1, the allowed range of ad is given by 

This range of ad was fairly well adhered to in the praphs of Fig. 1. Also, for the 
graphs ofp = 0.5 andp = 2.0, the stability range was adhered to. The best shock 
profiles were obtained by choosing p and ad close to the maximum values allowed 
by the stability conditions. Thus, for p = 1, the best profiles were given by taking 
ad = l/2. Also, the larger the value of a (within reasonable limits), the better was 
the profile. Also, values ofp withp > 1 gave excellent profiles with this method. 

Thus, it is recommended that a fairly large time step be chosen; then, a large 
value of a, close to 2.0; and then a value of d to make the time step close to the 
stability limit. 

It is also noted that the position of the discontinuity was in all cases within 1 grid 
point of the theoretical position. 

Experiment 3 

The physical system expressing the conservation of mass, momentum, and 
energy for an inviscid nonheat-conducting compressible ideal gas was solved by 
the schemes of Section 2 with the computational details of Section 4 incorporated 
into the formulation. The system was set up with a shock moving through the gas. 
This was exactly the same problem as used by Rubin and Burstein [l 11 and McGuire 
and Morris [7]. 

In the experiment, A”(U) was chosen to be a diagonal matrix. This led to an 
efficient solution of the block tridiagonal system of difference equation at each 
time level. 

Graphs were obtained for the density for a series of values of a, d, andp. How- 
ever, the profiles were poor in comparison to those obtained with the explicit 
schemes of McGuire and Morris [7]. Hence we omit these graphs. 

We feel that 2 requires to be chosen with greater care than we used in this 
experiment and that proper choice of a will give good profiles. We are currently 
investigating the choice of A”. 
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6. EXTENSION OF THE IMPLICIT SCHEMFS TO PROBLEMS IN Two 
SPACE DIMENSIONS 

In this section, the scheme (2.1), (1.4), and (4.10) is extended to solving systems 
of conservation laws in two space dimensions, namely, 

m/w + w7w(~) + (%PY)(4 = 0, (6-l) 
(x, y) E G = [0, X] x [0, Y], t > 0, 

with appropriate initial and boundary conditions. 
A uniform grid of spacing h is placed on G and a time step of size k is placed on 

the time axis. Without loss of generality, we let X = Nl * h and Y = N2 * h. wz 
is used to denote an approximation to u(ih, jh, mk). 

Extending the one space dimensional scheme in the fashion of Richtmyer [9] 
gives the scheme 

It is easily established that the scheme is second-order accurate provided 

2b+2c+d= 1, 

2b + ad = l/2. 
(6.5) 

Furthermore, %z+l is a first-order approximation to uz+l. 
Consideration of Eqs. (6.2) and (6.3) easily shows that this formulation cannot 

be used over a grid of size h, as “halfway” values w?++,~*+ , wZ~,~++ are required. 
Hence, as explained in McGuire and Morris [7] for the explicit schemes, resort to 
some procedure like that of Thommen’s paper [13] for predicting the starred 
values must be made. This makes the formulas for the starred values even more 
complicated. Also, (6.3) requires the solution of a 5band block matrix system 
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at each time level. This really makes this scheme unworkable as no simple 
algorithms exist for solving such systems. Other Richtmyer-type extensions can 
also be made (see Wilson [14]) but each of them suffers from the disadvantage of 
the 5-band block matrix system at each time level. 

An efficient extension to two space dimensions may be provided by resorting to 
Strang’s formulation [ 151 

wm+l = L.,2LyL2,2Wm (6.6) 

with L,,, operators combined at the end of one step and the beginning of the next. 
In (6.6), L, denotes the application of the one-dimensional scheme in the x direction 
and L, denotes its application in the y direction. Lr12 is simply L, with p replaced 
by p/2. For further details, see Strang [ 15 1. The computational procedure for this 
method when the operators L, and L, are defined in terms of two-step Richtmyer 
methods is given in Gourlay and Morris [16]. The extension of their ideas to the 
case when L, and L, are the implicit operators of earlier sections is straightforward. 
The application of this algorithm thus requires the solution of approximately two 
block tridiagonal systems per time step. 

The linearized stability properties of the method are given by 

where I h I , I p 1 are the maximum modulus eigenvalues of A and B. It is noted 
that a and d in the operators L, and L, need not have the same values for both 
operators. Thus the stability properties can be 

using an obvious notation. 
Explicit dissipation may also be added to the method in a one-dimensional 

manner in a similar fashion to that for the explicit methods of McGuire and 
Morris [7]. 

Some difficulties are experienced when using the scheme near the boundaries. 
Consider the first step of the algorithm; it is given by 

4’ = bG”+t.j + wi”_+*,w - V(A+;l,i - h?&i), (6.7) 
w!T) = wm - p[qJlc* .w’?’ 23 2+1.3 r+1.j - A:;,jw$!,,,) 

;‘4G,i -.K,,d + d(fa(:;.i - fi”!,,,>l, WI 

AZ* = A(;,,), 
& = _I (w!l’ 

2a r+f,l + “t!#.j> + (1 - 3 WE . (6.9) 
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At the upper boundary of x, the values M& are predicted by a second-order- 
accurate explicit formula which uses backward differences. For example, 

(6.10) 

wgj = wgl j -e 2 [(l - &) 3fNml.j - 4fNml-l,i +f&-2.j) 

(6.11) 

can be used. 
The values of wh:i are also required to be given in order to solve (6.8) along each 

y grid line. These values wh:i can be provided by the forward difference version of 
any second-order-accurate explicit formula. Ideally, it is inadvisable to use forward 
difference formulas at the lower boundary since they interpolate in a direction 
opposite to that of the characteristics of the differential equations. However, it is 
difficult to construct formulas for providing wifi without using forward differences. 

We denote the complete step of the algorithm for obtaining wi:‘, viz., (6.7), 
(6.8), (6. 9) with (6. lo), (6. 11) and the equivalent formulas for WE: , by 

w(2) = LiiZWrn. (6.12) 

This formula is applied along grid lines j = 0, 1, 2,..., N2. The second step is built 
up in exactly the same way and is denoted by 

w(4) = Llyw(2) . (6.13) 

It is obvious how succeeding steps are built up. 
The question of incorporating given boundary data is answered by the same 

arguments as used in McGuire and Morris [6]. To maintain overall second-order 
accuracy, the second-order-accurate boundary procedure of [6] should be used. 
However, due to the excellent results obtained with the first-order procedure of [6], 
we use the first-order boundary procedure in the numerical experiments. 

Thus, we use the formula 

wg = L$,u,” n = 1, 2,..., (6.14) 

where uO” and w,, denote values of urn and w along the boundary y = 0, before 
each application of L, (I). This formula provides data on the lower y boundary. 

Similarly, data on the lower x boundary is provided by the formula 

wg = L;,2u;Iz+1’2 m = 0, 1, 2 )...) (6.15) 
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where uO” and w,, now denote values of unz and w along the boundary x = 0, 
applied before each application of L,‘. 

Other procedures besides Strang’s formulation (6.6) may be used to extend the 
one-dimensional schemes to two space dimensions. A procedure comparable in 
efficiency is given by 

wm+s = L,L,L,L,wm. (6.16) 

This method is second-order accurate at even time levels. Its properties and 
implementation are considered in McGuire and Morris [8] for the case when L, 
and L, are explicit one-dimensional operators. The details in [8] are easily extended 
to the case when L, and L, are implicit. 

7. NUMERICAL EXPERIMENTS IN Two SPACE DIMENSIONS 

In this section, the scheme of Section 6 was applied to a simple example, namely, 
(6.1) with 

f(u) = g(u) = $28. (7.1) 

Initial conditions and boundary conditions given were 

4% Y, 0) = Hx + JY, (7.2) 

- 
U(O,Y, 0 1 1 (1 + yt)112 

2 
= t 1 3 

4x9 0, t) 1 1 
- 

(1 + xt)i/2 = t 1 9 

(7.3) 

(7.4) 

and these give the solution of (6.1) in 

to be 

{G=[O~x~1]x[Ody~l]}X[t>0] (7.5) 

- 
4x9 1 Y, 0 1 (1 + (x + JJ) t)‘/2 

2 
= t 1. (7.6) 

The errors (differences between w and u) are given in Table (IV) for various values 
of a, d, and p. h was chosen equal to 0.1. 

The first-order boundary procedure of McGuire and Morris [6] was used to 
incorporate the given boundary data. It is easily shown (see McGuire and Morris 
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[8]) that, in fact, for this equation (6.1) with (7.1), the first-order boundary 
procedure is second-order accurate. This emerges because certain derivatives in 
the error terms cancel. Thus for this problem, the scheme is overall second-order 
accurate. 

The maximum value of the solution is 1 and this occurs at t = 0. Thereafter the 
solution decreases. Thus when p = 1.0, the stability condition requires that 

TABLE IV 

Errors (Multiplied by 1W) at a Central Grid Point After 50 Time Steps 

d 

\ P a 0.125 

(4 0.25 -440 

0.5 -406 

1.0 1.0 -358 

2.0 -336 

4.0 -336 
--__ 

09 0.25 -277 

0.5 -221 

4.0 1.0 -209 

2.0 -204 

4.0 -213 

- 

- 

0.25 0.5 
- 

-412 -353 

-369 -296 

-323 -254 

-306 -245 

-320 -286 
-~ 

-253 -206 
-201 -159 

-186 -145 

-185 -152 

-213 -213 

1.0 2.0 4.0 

-223 57 627 

-152 132 697 

-115 159 724 

-122 131 665 

-212 -61 218 
______ 

-116 54 407 

-76 95 473 

-64 106 498 

-89 50 * 
-232 * * 

* Denotes nonlinear instability had occurred. 

0 < ad < l/2. From the results, it is seen that stability (at least for 50 time steps) 
does in fact hold over a larger range. The same remarks holds for p = 4.0. 

As regards minimizing truncation errors, an explicit analysis would provide the 
best values of a and d to use. From Table IV, the best value of d seems to be 
between 1.0 and 2.0 for the case when a = 0.25,0.5, 1.0, 2.0 and p = 1.0. 
A similar remark can be made for p = 4.0. 

In using this method, it would seem that a large time step can be used in the case 
of problems like the one used here. Also, ad should be chosen so as to make the 
value of p close to the maximum allowed by the linear stability conditions. Then, 
in the absence of any other criteria, a could be chosen as in the one-dimensional 
case, that is, approximately unity. This choice of a has the effect of centralizing 
the one-space-dimensional operators and hence one hopes this will give small 
truncation errors. 
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